Champ d'autocontrainte dans un cylindre

On considère un solide dont la configuration d'équilibre est un cylindre de révolution Ω de hauteur h et de rayon R constitué des points \underline{x} tels que $x^2+y^2\leq R^2$ et $0\leq z\leq h$ dans le repère $(0,\underline{e}_x,\underline{e}_y,\underline{e}_z)$. On suppose que les composantes du tenseur des contraintes $\underline{\sigma}$ dans ce repère s'écrivent

$$\sigma_{xx} = -A \left(R^2 - x^2 - 3y^2 \right), \quad \sigma_{xy} = -2 A x y, \quad \sigma_{yy} = -A \left(R^2 - 3x^2 - y^2 \right),$$

et $\sigma_{xz} = \sigma_{yz} = \sigma zz = 0.$

- 1. Dans quelles unités s'exprime la constante A? Sachant que le système est à l'équilibre, calculer les forces massiques b.
- 2. On note $r = \sqrt{x^2 + y^2}$, $\underline{e}_r = (x \underline{e}_x + y \underline{e}_y)/r$ et $\underline{e}_\theta = (-y \underline{e}_x + x \underline{e}_y)/r$. Calculer $\underline{\sigma}.\underline{e}_r$ et $\underline{\sigma}.\underline{e}_\theta$. En déduire les composantes σ_{rr} , $\sigma_{\theta\theta}$, σ_{zz} , $\sigma_{r\theta}$, σ_{rz} et $\sigma_{\theta z}$ dans le repère $(0,\underline{e}_r,\underline{e}_\theta,\underline{e}_z)$ des coordonnées cylindriques.
- 3. Calculer les forces surfaciques \underline{T}^d exercées sur le cylindre par son extérieur.
- 4. On suppose que A>0 mesure l'intensité du serrage qui conduit à l'état d'autocontraintes décrit par le tenseur des contraintes $\underline{\underline{\sigma}}$. Quelle est la valeur maximale de A lorsque le critère de rupture du matériau est gouverné par le critère de Tresca

$$f\left(\underline{\underline{\sigma}}\right) = \max_{i,j} |\sigma_i - \sigma_j| - \sigma_0 \le 0,$$

où σ_0 est une constante caractéristique du matériau et σ_i et σ_j les contraintes principales de $\underline{\sigma}$?